Typhoon Predictions with GNSS RO Data Assimilation in the MPAS-GSI System

Shu-Ya Chen¹, Cheng-Peng Shih², Ching-Yuang Huang²,

Hsiu-Wen Li¹, Zhiquan Liu³, and Wen-Hsin Teng^{2,4}

¹GPS Science and Application Research Center, National Central University, Taoyuan, Taiwan ²Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan ³Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, CO. U.S.A. ⁴ Central Weather Bureau, Taipei, Taiwan

Introduction

- To improve a typhoon prediction, an accurate representation of the atmospheric environment would be much helpful. However, sparse observations are available over the ocean.
- The accurate and abundant observations over ocean could be helpful for the NWP, e.g., FORMOSAT-7 data over the tropical region.
- With the global MPAS-GSI system, we conduct data assimilation to assess the RO data impact on the prediction of typhoon events. A preliminary result for two typhoon cases, i.e., Typhoon Nepartak (2016) and Typhoon Lekima (2019), will be shown.

GNSS Radio Occultation

- GNSS (Global Navigation Satellite System)
- Global coverage
- High accuracy and high vertical resolution
- All weather-minimally affected by aerosols, clouds or precipitation

Paper review

Typhoon Kaemi (2006)

2012/06 Mei-yu front

cyclogenesis of typhoon Nuri (2008)

Vertical Cross Section of Vorticity and RH

600-km averaged cross section

Cyclogenesis after two-day forecast

ChenKuoHuang (2019) has been submitted to Mon. Wea. Rev.

Vor: 2x10⁻⁵s⁻¹ RH: %

GPSARC GPS Science and Application Research Center

Vertical Motion and Water Vapor Mixing Ratio

Statistics for 10 Typhoons over the NW Pacific (2008 – 2010): Probability of detection is increased from 30% (without GPS RO DA) to 70% (with GPS RO DA).

Introduction

- To improve a typhoon prediction, an accurate representation of the atmospheric environment would be much helpful. However, sparse observations are available over the ocean.
- With the global MPAS-GSI system, we conduct data assimilation to assess the RO data impact on the prediction of typhoon events.
- A preliminary result for two typhoon cases, i.e., **Typhoon Nepartak (2016) and Typhoon Lekima (2019)**, will be shown.
- The accurate and abundant observations over ocean could be helpful for the NWP, e.g., FORMOSAT-7/COSMIC-2 data over the tropical region.

國立中央大學全球定位科學與應用研究中心

GPSARC GPS Science and Application Research Center

MPAS Model Configuration

CONTOUR FROM 15 TO 50 BY 5

Model configuration:
Variable reso. meshes: 60-15 km
Vertical levels of 41 and model top of 30 km
Physics suites : mesoscale reference
Convection: Tiedtke ; Microphysics: WSM6 ; Land
surface: Noah ; Boundary layer: YSU ; Surface
layer: Monin-Obukhovi ; Radiation, LW/SW:
RRTMG

MPAS-GSI system

Low resolution

(120 km)

Typhoon Nepartak (2016)

Multi-Agency Tropical Cyclone Forecast

JTWC:

2016/07/03 00UTC: Tropical depression 2016/07/03 12UTC: Tropical storm 2016/07/04 18UTC: Typhoon 國立中央大學全球定位科學與應用研究中心

GPSARC GPS Science and Application Research Center

Experimental design

$\frac{GNSS\,RO\,Data}{2016/07/02\,0000\,\text{UTC}} \sim 2016/07/04\,0000\,\text{UTC}$

Simulated Track and Intensity

After two-day cycling DA (T, Z, and Wind)

GTS

Geometric height interpolated to 500 hPa (m)

40N

30N

20N

10N

265

266

267

268

269

270

271

272

Nepartak gts 2016-07-04 00

140E

160E

120E

BND

GPS Science and Application Research Center

Track Error

	AVE. TRACK ERROR (07/04-07/07)		Delute lanulali
EXP	3DVAR DA	Hybrid DA	
NODA	112.5	112.5	
GTS	98.4	100.0	
REF	79.5	71.5	
BND	83.0	60.5	與應用研究中心

Verification against ERA-Interim (RMSE) [averaged of 5-day fcst.]

FORMOSAT-7/COSMIC-2

FORMOSAT-7/COSMIC-2 satellites were launched successful on 25 June 2019.

The first RO profile (2019/07/16 11:44 TST)

福爾摩沙衛星七號(FS7-1~6)

111 已運行天數: • 大氣剖面總數: 261,877 100,406 電離層剖面總數: *福衛七號資料將於驗證完成後公開提供

福爾摩沙衛星三號(FS3-1~6)

4.930

- 已運行天數
- 大氣剖面總數: 6.942.993
- 電離層剖面總數: 4,642,043

3D軌道展示

http://tacc.cwb.gov.tw

國立中央大學全球定位科學與應用研究中心 GPSARC GPS Science and Application Research Center

國家實驗研究院

Data Penetration

FS7/C2 Data @ 2019/07/16 (first day)

rch Center

FS7/C2 NRT Data (30 days)

國立中央大學全球定位科學與應用研究中心 GPSARC GPS Science and Application Research Center

Verification against MetOP (30 days)

atmPrf (Bending Angle)

FORMOSAT-3 (±45°) 2018/08/01-2018/08/31

FORMOSAT-7 2019/07/26-2019/08/25

courtesy of TACC

GPSARC GPS Science and Application Research Center

國立中央大學全球定位科學與應用研究中心

Verification against MetOP (30 days)

atmPrf (Refractivity)

FORMOSAT-3 (±45°) 2018/08/01-2018/08/31

FORMOSAT-7 2019/07/26-2019/08/25

courtesy of TACC

GPSARC GPS Science and Application Research Center

國立中央大學全球定位科學與應用研究中心

Typhoon Lekima (2019)

GNSS RO distribution

LKM RO-DA Time : anl Total : RO Number (2322) 90°N 45°N 45°S 90°S 180° 90°W ٥° 90°E 180° Other-GPS-RO(936) F3-RO(68) F7-RO(1318) • •

FS3 FS7 **Others**

More than 50% come from FS7

2019/08/06 0000UTC

2019/08/06 0600UTC

Statistic (bending angle)

國立中央大學全球定位科學與應用研究中心 GPSARC GPS Science and Application Research Center

Summary

- In this study, the simulations with GNSS-RO data assimilation have better predictions in typhoon tracks for both assimilation strategies (3DVAR or Hybrid).
- ➢ Further, the assimilation with RO bending angle has a better performance than the others (GTS and REF).
- ➢ From the preliminary comparison, the data quality of FS7 is comparable with FS3, but the FS7 has more data available and further penetrate into the lower troposphere.
- With GNSS RO DA (inc. FS7), the simulated track and intensity show a slightly improvement in the early forecast of typhoon Lekima (2019).
- Further investigation and more experiments will be conducted in the future.

Thank you ~

GPS Science and Application Research Center

國立中央大學全球定位科學與應用研究中心